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Entropy maximization tendency in topographic 
turbulence 
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(Received 5 January 1993 and in revised form 24 September 1993) 

Numerical simulations of geostrophic turbulence above topography are used to 
compare (a) nonlinear generation of system entropy, S, (b) selective damping of 
enstrophy and (c) development of vorticity-topography correlation. In the damped 
cases, S initially increases, approaching a quasi-equilibrium (maximum S subject to the 
instantaneous, though decaying, energy and enstrophy). When strongly scale-selective 
damping is applied, onset of the vorticity-topography correlation follows the timescales 
for enstrophy decay. During the period of decay, it is shown that nonlinear interaction 
continues to generate S, offsetting in part the loss of S to explicit damping. 

1. Introduction 
H theorems for statistical fluid dynamics (Carnevale, Frisch & Salmon 1981, 

hereinafter referred to as CFS) have demonstrated entropy maximization tendency as 
an inherent property of non-dissipative second-order turbulence closure equations for 
a range of problems. The concept of entropy maximization may also be relevant for 
dissipative dynamics, in particular, for turbulence over irregular topography (Holloway 
1978). This tendency has been demonstrated in relation to approach to absolute 
equilibrium (Carnevale 1982), predictability of fluid motions (Carnevale & Holloway 
1982; Carnevale & Vallis 1984), and internal gravity wave dynamics (Frederiksen & 
Bell 1983, 1984). Implication of the tendency in two-dimensional atmospheric flows 
on a sphere has been examined by Frederiksen & Sawford (1980). The implication in 
ocean circulation on a /3-plane basin has been considered in Salmon, Holloway & 
Hendershott (1976) (hereinafter referred to as SHH), Holloway (1986), Griffa & 
Salmon (1989) and Cummins (1992), identifying the tendency with emergence of 
Fofonoff gyres from initial random eddy fields. It has been argued that the tendency 
may serve as a means of parameterization for unresolved scales in coarse resolution 
ocean models (Holloway 1992). 

The present paper examines how entropy maximization is manifested in numerical 
simulation of turbulence over irregular topography. Questions we address are: (i) how 
the entropy maximization proceeds in dissipative systems; and (ii) to what extent 
entropy serves as a diagnostic in relation to development of vorticity-topography 
correlation. Discussions are complemented with examination of the enstrophy 
minimization process (Bretherton & Haidvogel 1976). We recall statistical theories and 
make observations about qualitative behaviour of entropy ($2). We then present 
numerical results, including discussion of approximate entropy calculation for isotropic 
flow ($3), with remarks in $4. 
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2. Statistical theory 
Consider a homogeneous, rotating layer of fluid over irregular topography. Given the 

smallness of Rossby number and fractional change in the layer thickness, the fluid 
motion is governed by the potential vorticity equation. In spectral form (Holloway 
1978) 

(d/dt) 6 k  + Akpq(6-p <-q+ 6-p  h-q) = ' k  6, (1) 
k+p+q=O 

where lk and h-, are Fourier modes in wavevectors k and - q, respectively for vorticity 
and fractional height of topography (multiplied by Coriolis parameter). The 
summation, corresponding to the Jacobian term J(@, <+A) in physical space, is taken 
over all p and q modes for which k + p + q  = 0.  vk is the spectral representation of 
dissipation operator to be specified as needed. A,, = ( p ,  q y - p y  q,) /p2 is the interaction 
coefficient. 

Numerical simulations (Bretherton & Haidvogel 1976) demonstrated that a 
realization of (l), starting from a random field uncorrelated with bottom topography, 
will quickly develop vorticity-topography correlation in a sense of clockwise circulation 
over 'bumps' and anti-clockwise over 'dips'. Equilibrium statistics of an ensemble of 
such realizations without force and dissipation can be determined from the canonical 
distribution Y({Q}) cc exp { - vE-pQ} (SHH), where E energy and Q potential 
enstrophy are two quadratic invariants of (l), 

E =  ix 1<k1'/k2 and Q = ix 16k++k12, 
k k 

and CT, ,u are Lagrange multipliers to be determined from prescribed ( E )  = E, and 
( Q )  = Q,, with ( ) denoting ensemble average. Statistical moments from the canonical 
distribution, 

( @ k > e q  = hk/((g/p) + k2), (2 4 
(C-k  &)eq = 2k2/ (c+pk2)  +p2k4(h -khk ) / (g+~k2)2 ,  (2 b) 

(6-:-khk)eq = -1Uk2(h-khk)/(g+pk2), (2 c) 

exhibit strong correlation between flow and topography. Specifically, ( @ k ) e q  cc h, on 
large scale, ( < k ) e q  = - k 2 ( k k )  cc -hk on small scales, and (c-k6k)eq has a steady 
component proportional to (kk hk).  Non-equilibrium results from closure equations 
exhibit many of these features (Herring 1977; Holloway 1978; Zou & Holloway 1993). 

The p-effect is not included in (1). This is in part because we shall examine 
approximate entropy calculation for isotropic turbulence below (cf. (3 a)). Also, on 
doubly periodic P-plane one must calculate evolution of a spatially uniform flow U(t) 
and decompose flow into Uy, leading to a self-consistent model describing 
evolution of $ and U (see Hart (1979) for details). The canonical statistics for @ are 
the same as (2) (Carnevale & Frederiksen 1987). Disequilibrium statistics are examined 
in Zou & Holloway (1993). In the present study we consider onlyfplane dynamics for 
simplicity . 

H theorems provide insight into the absolute equilibrium (2). The quantity that plays 
the central role is the entropy S, which measures the information necessary to specify 
the state of the fluid from only limited knowledge of quantities such as the second- 
order correlation matrix Y.  Maximizing S subject to the constraint given by knowledge 



Entropy muximizution tendency in topographic turbulence 363 

of Y yields S = kln{det Y )  (CFS). For the present problem, with statistical homogeneity 
of {C,} and {hk) ,  

When only total energy and total enstrophy are known, the maximum of S (or 
minimum of information) constrained by ( E )  = E, and (Q) = Q, is obtained at 
(CPk Q)eq and (C-khk)eq. Recent works by Miller (1990), Robert & Sommeria (1991), 
and Miller, Weichman & Cross (1992) emphasize the role of higher-order invariants of 
motion and show how to take them into account in a more general framework of 
equilibrium statistical mechanics. In the present study, we will choose initial conditions 
in an especially simple way such that information on higher-order invariants coincides 
with that preserved by truncated dynamics. 

EDQNM closure equations of (1) imply 

dS/dt = (dS/dt), + (dS/dt),, (4) 
where (dS/dt), and (dS/dt), symbolically represent the rates of entropy generation 
and dissipation, respectively. Nonlinear advection and topographic scattering 
contribute (dS/dt),. It is shown (CFS) that (dS/dt), 2 0, with equality only at 
(lPk ck)eq and (C-k hlf)eq. In the absence of dissipation, S monotonically increases to its 
maximum value. This, together with (2), suggests a correspondence between entropy 
maximization tendency and flow-topography correlation tendency in conservative 
systems. 

In the presence of dissipation the correspondence is altered. Results depend on 
various factors including initial energy spectrum, the form and strength of dissipation. 
Nevertheless, nonlinear interaction and resulting entropy generation (dS/dt), operate 
in dissipative systems as in conservative ones. For initial states far from absolute 
equilibrium, (dS/dt), has been shown to dominate (dS/dt), during the early phase of 
evolution (Carnevale 1982). 

Some qualitative behaviours of S, which are found helpful in interpreting numerical 
results in the next section, may be observed from (4). 

First, when vk is sufficiently small that local eddy turnover time 7,(k) E (k3E(k))-i is 
shorter compared with local viscous timescale 7,(k) = l / v ,  for all retained scales, 
approach to a quasi-equilibrium (or an instantaneous maximum entropy state) is 
expected (Fox & Orszag 1973). Moreover, since (dS/dt), N 0 near instantaneous 
maximum entropy states, later evolution is characterized by entropy decay, with decay 
rate near the viscous decay rate, 

dS/dt ?: (dS/dt), = -x vk. 
k 

Secondly, in the case of moderately to strongly scale-selective dissipation (e.g. 
v, K k4), ~ , ( k )  decreases quickly as k + k,,,, often resulting in 0[7,(k)] - 0 [ ~ , ( k ) ]  for k 
near k,,, and hence failure of relaxation at small scales. Approach to instantaneous 
maximum S states is not expected in the presence of such vk. Then (dS/dt), does not 
approach zero but acts to compensate viscous loss of S. Hence, the actual decay rate 
of S is smaller than the viscous decay rate. 

Thirdly, associated with scale-selective vk is selective decay of invariants of motion 
(Bretherton & Haidvogel 1976; Leith 1984). For system (1) Q decays relative to E 
(Bretherton & Haidvogel 1976). Minimizing Q subject to E = E, yields 

$k = h k / ( y  + k2) ,  ( 5 )  
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FIGURE 1. Entropy as a function of time. --, Theoretical prediction of S from (2) and (3) using ( E )  
and (Q) from 12-member ensemble runs. The thick line is for single realization using shell-averaging. 
Remaining curves correspond to 12, 6, 3, 2-member ensembles, respectively. 

where y is a Lagrange multiplier. Such minimum Q states are nonlinearly stable 
(Carnevale & Frederiksen 1987). Thus, in the case of scale-selective vk the system may 
seek a minimum enstrophy state while moving towards instantaneous maximum S 
under the action of (dS/dt),. The relevance of the two tendencies to the development 
of vorticity-topography correlation depends on the strength of scale-selective u,. For 
sufficiently weak vk, S maximization is expected to dominate, whereas for moderate to 
strong u,, Q minimization may act effectively after the initial stage of development. 

3. Numerical results 
The simulations presented below were conducted by integrating (1) in a circularly 

truncated spectral domain defined by k < k,,,, with k,,, = 30 unless stated otherwise, 
using the computer code in Zou & Holloway (1993). Time stepping is taken with leap- 
frog scheme, the triad summation calculated using spectral transformation (Orszag 
1971), and dissipation treated analytically. The simulations start from initial fields 
generated according to energy spectrum 

E(k) = e, k2/(ki + k5) ,  ( 6 4  

or E(k) = e, k2 exp (- (k/k,)’), (6b) 

with random phase. The topography h is set up from variance spectrum 

H(k) = h,/(3 + k)2.5.  (7) 

Specifically, the amplitude of modal topography h, is calculated according to (H(k)/.nk)i, 
with its phase uniformly distributed over [0,2n]. By central limit theorem the 
topography thus constructed is approximately Gaussian. The constants e, and h, are 
chosen to give a prescribed ratio of r.m.s. vorticity {:ms to r.m.s. topography h,,,y, 
where <:ms = (2 I{,J2);. The constant k,  in (6) defines initial energy-containing scale. 

The entropy expression (4) is undefined for wavenumber k where the argument of the 
logarithm vanishes. (The argument is non-negative by Schwarz inequality.) However, 
we ensured that this circumstance does not happen by assigning a topographic 
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FIGURE 2. Inviscid cases. (a) Entropy and (b) vorticity-topography correlation. Horizontal dash lines 
are predicted by (2) and (3) for the case <:Jhrm,s = 0.83. Remaining curves correspond to 
<~mJh7ms = 0.83, 1.00, 1.25 and 2.50, respectively. Time is expressed in terms of initial eddy turnover 
time 47~/<:~~, and entropy values have been normalized by their initial values. 

0.80 r 

Wavenumber, k 

FIGURE 3. A sequence of vorticity-topography correlation spectra for the case <:mJhrntb = 1.25 in 
figure 2.  The spectra correspond to t = 0, 1, 2, 3 and 4, respectively. The thick line is predicted by 
(2c). 

spectrum and initializing the random vorticity field with non-vanishing variance at all 
k .  During the period of decay of these finite experiments, vorticity variance did not fall 
below machine threshold at any k .  

3.1. Approximate entropy calculation for isotropic turbulence 
Evaluating S according to (3) requires an ensemble of realizations of (1). Acquiring a 
sufficient ensemble can be computationally demanding for long-time and high- 
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t = 3  

FIGURE 4. Topography h(x ,y )  and a sequence of streamfunction fields for the same case 
as in figure 3 .  

resolution integrations. However, this may be avoided by approximating the ensemble 
average in (3) with shell average 

where (Z(k) ,  H(k) ,  R(k))  c (1<k12, lhk12, Re (c-k hk))‘  
k-ilkl< k f i  

This approximation is appropriate when the initial field {c:} and topography {hk} are 
statistically isotropic, as in the present study. 

A sequence of runs was made to test the approximation. Results are shown in figure 
1. These runs are inviscid so that results can be compared with theoretically predicted 
values from (2) and (3). To explore the sensitivity of entropy to ensemble size the runs 
were also made with low resolution k,,, = 15. Figure 1 shows S as a function of time. 
Also shown is the maximum entropy predicted by (2) and (3) ,  with ( E )  and ((2) taken 
from the 12-member ensemble runs (cf. horizontal long-dash line). It is seen that a 
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FIGURE 5. Rayleigh friction cases. (a) Entropy and (b )  vorticity-topography correlation: --, 
TJTP,, = 10; -, = 5 and ---, = 1 .  Curves -- in (a)  are the instantaneous maximum S obtained 
from (2) and (3) using instantaneous E and Q for the case T , / T ~ , ,  = 10 and 5,  respectively. 

Wavenumber, k 

FIGURE 6. A sequence of energy spectra for the case T ~ , / T : ~ ~  = 10 in figure 5. E(k) from the simulation: 
_-- , at t = 0; 0, at t = 3; *, at t = 6. -, E(k) for the instantaneous maximum S states at t = 3 
and 6. -, E(k) for the minimum Q state ( 5 ) .  

small ensemble may result in underestimating entropy. Moreover, shell-averaged S is 
found insensitive to ensemble size. Therefore we adopted (8) for subsequent calculation 
of s. 

3.2. Results from inviscid runs 
Figures 2-4 give the results from inviscid simulations. These runs examine the 
correspondence between the entropy maximization tendency implied by the H theorem 
and development of vorticity-topography correlation suggested by the approach to (2). 
Figure 2(a) shows entropy time series from simulations. The initial fields and 
topography in these runs are set up according to (6a)  with k,  = 4 and (7), where e, and 
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FIGURE 7. Laplacian friction cases. (a)  Entropy, (b) vorticity-topography correlation and (c) energy 
and potential enstrophy. The thick solid, thin solid and shorter dash lines (-, ~ J T ~ , , , ~  = 7; -, 
= 0.7; ---, = 0.35. --) in (a) are instantaneous maximum S for the case T J T : ~ ~  = 7 and 0.7. 
Curves -- and --- in (b) are the correlations predicted respectively by the minimum Q state ( 5 )  
with ( E )  = E, = 1 and the maximum S state (2) with ( E )  = E,, = 1 and (Q) = Q,, = 22.3. Curve 
__ in (c) is the minimum Q from (5 ) .  For each pair of curves in ( c ) ,  the upper one is for E and the 
lower for Q. S, E and Q are normalized by their initial values. 

h, are chosen to give the ratio <:ms/hrms ranging from 0.83 to 2.5. S exhibits rapid 
increases during an initial phase of evolution, followed by gradual transition to 
corresponding maxima with small fluctuations. Also shown in figure 2 ( a )  is the 
maximum entropy predicted by the canonical statistics (2) and ( 3 )  for the case of 

Note that S increases most rapidly during an initial eddy turnover time 
T : ~ ~  = 47~/<:~~. Figure 2(b) shows that this corresponds to the time over which 
vorticity-topography correlation develops. Figure 3 displays a sequence of correlation 
spectra R(k) for the case of (&Jhrms = 1.25. The initially rapid increase in S up to 
t = 1.0 (cf. figure 2 a )  reflects the onset of correlation at small to intermediate scales. 
Subsequent increase in S results from correlation development at large scales. Note 
that the faster approach to (<-:-khk)eg at small scales than at large ones may be 

<:ms/hrms = 0.83. 
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FIGURE 8. Biharmonic friction cases. (a) Entropy, (b) vorticity-topography correlation and (c)  energy 

and potential enstrophy. -, T , / T ; ~ , ,  = 7 ;  -, = 0.7, ---, = 0.07. The rest is as in figure 7. 

anticipated from the shorter local eddy turnover time 7,(kma,) = 0.3 as compared 
with 7+,(kmin) = 7.4. Evolution in physical space is shown in figure 4. By time t = 4 the 
flow is characterized on large scale by the anticyclonic circulations over ‘bumps ’ and 
cyclonic circulation over ‘ dips’. 

3.3. Result from viscous runs 
Figures 5-9 show results from viscous runs, extending the correspondences seen in the 
inviscid cases to cases including dissipation. Three forms of dissipation are used, with 
different degrees of scale selectivity: (i) Rayleigh friction v, = v,, (ii) Laplacian friction 
v, = v2 k2, and (iii) biharmonic friction v, = J I ~  k4. The significance of viscous effects 
relative to inertia effects is measured by the ratio 7,/7,0,, evaluated at k,,,, where 
7,s l / v ,  is the local dissipation timescale. For each form of dissipation three runs are 
made corresponding to three values of this ratio, as summarized in table 1. The initial 
energy spectrum is given by (6b)  with k,  = 4, where e, is chosen, together with the 
choice of h, in (7), to give the ratio ~ ~ m s / h y m s  = 1. This form of initial energy spectrum 
is sufficiently away from the absolute equilibrium spectrum that (dS/dt), is initially 
dominant in (4). 
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FIGURE 9. Sequence of energy spectra: (a) for the case ry/r&m8 = 0.7 in figure 7 and (b) for the case 
rJr& = 0.07 in figure 8. E(k) from the simulation at: ---, t = 0 ;  0, t = 1.5; *, t = 6. -, E(k) for 
the instantaneous maximum S states at t = 1.5 and t = 6. -, E(k) for the minimum Q state (5).  

Results for the Rayleigh friction cases (experiments 1-3) are given in figures 5 and 
6 .  Entropy is shown in figure 5(a). Also shown are instantaneous maximum S for the 
cases of 7,/7:,, = 5 and 10, which are obtained from (2) and (3) using instantaneous 
E and Q. Entropy generation dominates the viscous dissipation initially, leading to 
rapid increases in S during the early phase of evolution. However, as the distance 
between actual states and instantaneous maximum S states decreases the entropy 
generation becomes weak and eventually is balanced by the dissipation. Subsequent 
evolution is characterized by entropy decay. 



Entropy maximization tendency in lopogrupphic tuvhulence 37 1 

EXP 
1 
2 
3 
4 
5 
6 
7 
8 
9 

VII 

4.2 x lo-’ ~ 

8.4 x lo-‘ ~ 

4.2 x lo-’ ~ 

- 9.4 x lo-‘ 

- 4.7 x 10-5 
- 4.7 x 

VJ rt . /~:r>h< 
~ 1 

5 
10 

~ 

~ 

- 0.35 
- 0.7 

7 - 

5.2 x 0.07 
5.2 x lo-‘ 0.7 
5.2 x lo-* 7 

tdS/dt), 
- 1243 
- 246 
- 123 
- 1286 
- 643 
- 64 

- 4430 
- 443 
- 44 

(dS/dd 
- 1219 
- 233 
- 120 
- 365 
- 356 
- 58 

-271 
- 241 
- 38 

TABLE 1. A list of viscous runs. uo, v 2  and u4 are respectively the Rayleigh, Laplacian and bi- 
harmonic friction coefficients. T,,/r:ms is the ratio, evaluated at  k,,,, of the local viscous timescale 
rv = l / v ,  to  the initial r.m.s. eddy turnover time (= 471/<:~~), where [:,,,s is the initial r.m.s. vorticity. 
(dS/dt)”( = C, uk) is the entropy viscous decay rate implied by closure equations. (dS/dt) is the rate 
of entropy change in the simulations averaged over the later half simulation period. 

Table 1 shows that actual decay rates for the three uniform damping runs are nearly 
the viscous decay rates, i.e. 

dS/dt N (dS/dt), = - C vk. 
k 

This is expected from the earlier observation, that is, the approach to instantaneous 
maximum S states. The approach itself, say in the case of 7,/7~,s = 10, may be 
anticipated from the fact that 7,(k) < 7,(1) = 2.3 < 7,,(k) = 23, at t = 1.5 and for all 
k d k,,,. Figure 6 displays how the approach takes place in spectral space for the same 
case. By time t E 3 the approach has been achieved at nearly all scales. In subsequent 
decay, actual energy spectra remain close to instantaneous maximum S states, implying 
(dS/dt), N 0; hence the viscous decay rate approximates the actual decay rates. Note 
in figure 5(a) that the S increasing tendency prevails up to t < 0.5, 1.0 and 1.5 
respectively for the three cases. Figure 5 (b) shows that vorticity-topography 
correlation develops over these timescales. 

Results from the scale-selective dissipation runs (experiments 4-9) are given in 
figures 7-9. Entropy maximization tendency proceeds initially much as before, but 
subsequent entropy decay depends on the strength of dissipation. For sufficiently weak 
vk the decay is similar to the previous cases, characterized by the approach to 
instantaneous maximum S states. Examples are the cases of 7,/7:,, = 7, shown by the 
thick solid lines in figures 7 ( a )  and 8(a).  Table 1 indicates that the actual decay rates 
for the two cases are near the viscous rates, as expected from the earlier observation 
about the small entropy generation rate (dS/dt), near instantaneous maximum S 
states. 

For the cases of moderate to strong dissipation, later evolution is characterized by 
(i) departure of actual S from instantaneous maximum S and (ii) actual decay rates 
smaller than viscous decay rates. Examples may be found in the cases 7v/7:ms = 0.7, 
shown by the thin solid lines in figures 7 ( a )  and 8(a). This situation follows the 
observation about the failure of relaxation to instantaneous maximum S states at 
k + k,,,. One example is shown in figure 9 (a).  For k +  k,,, the actual energy spectra 
E(k) depart from those of instantaneous maximum S states throughout the simulation. 
The departure induces (dS/dt), which tends to compensate viscous loss of S, 
accounting for the departure in figure 7 ( a )  and the smaller decay rate given in table 1 .  
The departure in this case should be expected because 7,(k) + 7,(k) as k + k,,,. 
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More scale-selective vk leads to more pronounced departure at large k .  The 
biharmonic friction case r,/7roma = 0.7 is shown in figure 9(b). The wider departure 
between the actual S and the instantaneous maximum S is shown in figure 8 (a), with 
the larger difference between actual decay rate and viscous decay rate listed in table 1. 

Comparison of the times on which S maximization proceeds (see figures 7(a )  and 
8(a)) with those for c-h correlation to develop (see figures 7(b) and 8(b))  shows that 
the two tendencies correspond well for sufficiently small dissipation. For strongly scale- 
selective damping the timescales of enstrophy minimization correspond more closely to 
the times for the correlation development (see figures 7(c) and 9(c)). Similar remarks 
hold for energy spectrum evolution. Specifically, experimental E(k) can follow 
instantaneous maximum entropy energy spectrum (see figure 6), or minimum enstrophy 
energy spectrum (see figure 9b), or intermediate between the two (see figure 9a), 
depending on the extent of scale-selective dissipation. It should be pointed out that in 
the limit of infinite resolution the maximum entropy state has no fluctuating 
components and becomes identical to the minimum enstrophy state (Carnevale & 
Frederiksen 1987). 

4. Discussion 
The tendency for increasing entropy S has been examined in numerical simulation 

of turbulence over irregular topography. Results for conservative systems demonstrate 
correspondence between entropy maximization and the development of vorticity- 
topography correlation. When dissipation is included, S may increase initially and 
then decay. For cases with uniformly or weakly scale-selective damping, S approaches 
a quasi-equilibrium (maximum S subject to instantaneous, decaying energy and 
enstrophy). Further nonlinear generation of S is small, and S decays by explicit 
dissipation. For cases with strong, scale-selective damping, flows remain far from 
quasi-equilibrium. Onset of vorticity-topography correlation then corresponds to the 
timescale for selective decay of enstrophy relative to energy. Actual decay of S under 
strong, scale-selective damping results from a competition between nonlinear 
generation and loss to explicit damping. 

We have made exploratory examination under special conditions. A host of further 
questions can and should be raised. We conclude with mention of some of these 
broader issues. 

The topography used is statistically homogeneous. When a broad flat area is 
included in topography (such as an abyssal plane), eddy-topography interaction will 
proceed less effectively and the timescale for entropy maximization can be long (cf. 
Wang & Vallis 1993; Cummins & Holloway 1993). If the dissipation timescale is only 
a small fraction of the entropy maximization timescale, eddies initially released over 
flat areas may be dissipated before the maximum entropy state is realized. 

The formulation adopted here is based on energy and enstrophy ensemble. These are 
the only invariants (other than circulation and linear momentum) preserved by the 
spectrally truncated system such as (1) despite the fact that the corresponding 
continuum system also has higher-order vorticity invariants. The presumption 
underlying the energy-enstrophy ensemble approach (Kraichnan 1975) is that the 
hypersurfaces of higher-order invariants sample the surface of constant energy and 
enstrophy so frequently that statistics of ensemble realizations of turbulence can be 
determined from averaging over the energy-enstrophy ensemble. There have been 
evidences in support of the energy-enstrophy based theories, among which is the 
robust approach to the absolute equilibrium from a random initial field (Fox & Orszag 
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1973; Basdevant & Sadourny 1975; Kells & Orszag 1978; Carnevale 1982; Kaneda, 
Gotoh & Bekki 1989). 

Possible existence of nonlinear stable states (Carnevale & Frederiksen 1987 ; 
Shepherd 1987) are at variance with the energyxnstrophy based theories. As shown in 
Shepherd (1987), for sufficiently large value of /3, there may exist a subset of finite 
measure on the energyxnstrophy ensemble which does not effectively mix with 
hypersurfaces of higher-order invariants. Recent efforts by Miller (1990), Robert & 
Sommeria (1991), and Miller et al. (1992) show how the higher-order invariants can be 
taken into account in determining statistical equilibrium states. 

In the present study we have strived to set up the experiments as simply as possible 
while retaining essential dynamics for exploring the entropy maximization and 
enstrophy minimization in the same context. We have omitted /I. More importantly, we 
have constructed the initial conditions from (6) with random phase, which approach 
joint-Gaussianity by the central limit theorem. This simple design has the consequence 
that the higher-order invariants are fully implied by moments up to second order. This 
condition for the higher-order invariants would be preserved by inviscid dynamics 
coincidentally with the tendency we actually compute from truncated spectral 
dynamics. 

We thank Professor Y. Kaneda, Drs B. Tang and P. F. Cummins for interesting 
discussions. This research has been supported by the Office of Naval Research 
(N00014-87-5- 1262). 
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